Abstract

Triangle strips are a widely used hardware-supported data-structure to compactly represent and efficiently render polygonal meshes. In this paper we survey the efficient generation of triangle strips as well as their variants. We present efficient algorithms for partitioning polygonal meshes into triangle strips. Triangle strips have traditionally used a buffer size of two vertices. In this paper we also study the impact of larger buffer sizes and various queuing disciplines on the effectiveness of triangle strips. View-dependent simplification has emerged as a powerful tool for graphics acceleration in visualization of complex environments. However, in a view-dependent framework the triangle mesh connectivity changes at every frame making it difficult to use triangle strips. In this paper we present a novel data-structure, Skip Strip, that efficiently maintains triangle strips during such view-dependent changes. A Skip Strip stores the vertex hierarchy nodes in a skip-list-like manner with path compression. We anticipate that Skip Strips will provide a road-map to combine rendering acceleration techniques for static datasets, typical of retained-mode graphics applications, with those for dynamic datasets found in immediate-mode applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.