Abstract

Various click models have been recently proposed as a principled approach to infer the relevance of documents from the clickthrough data. The inferred document relevance is potentially useful in evaluating the Web retrieval systems. In practice, it generally requires to acquire the accurate evaluation results within minimal users' query submissions. This problem is important for speeding up search engine development and evaluation cycle and acquiring reliable evaluation results on tail queries. In this paper, we propose a reordering framework for efficient evaluation problem in the context of clickthrough based Web retrieval evaluation. The main idea is to move up the documents that contribute more for the evaluation task. In this framework, we propose four intuitions and formulate them as an optimization problem. Both user study and TREC data based experiments validate that the reordering framework results in much fewer query submissions to get accurate evaluation results with only a little harm to the users' utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.