Abstract
The heterogeneous catalytic ozonation with natural iron oxides has been proven to be a powerful technology for the removal of recalcitrant organics in water due to the involvement of reactive oxygen species. However, little information can be obtained about the performance of Ferrihydrite in catalytic ozonation especially the relavant reaction mechanism. In this study, Ferrihydrite was synthesized via a simple precipitation method and 2,4-Dichlorophenoxyacetic acid (2,4-D) degradation was used to evaluate its catalytic ozonation performance. Compared with sole ozonation, Ferrihydrite had an excellent activity in catalytic ozonation and 2,4-D was always efficiently degraded (> 90%) at a wide pH range (3.0-8.0). Electron spin resonance (ESR) and radical scavenging tests proved that •OH and O2•- were the dominant reactive oxygen species (ROS) in 2,4-D degradation (92.33% vs. 77.4% in ozone alone) and mineralization (63% vs. 16.2% in ozone alone). Based on a series of characterizations, Ferrihydrite processed a higher BET area and surface -OH groups than other iron oxides such as FeOOH, Fe2O3 and Fe3O4. The efficiently exposed surface -OH group with a high density was the reactive centers for the generation of ROS. Importantly, pHPZC of Ferrihydrite (6.3) and pKa of 2,4-D (2.73) induced a pH-dependent 2,4-D removal patterns (surface reaction at pH < 6.3 and reaction in bulk solution at pH > 6.3) were proposed via the electrostatic attraction or repulsion between the hydrogenated/hydroxylated surface of Ferrihydrite and negative charged 2,4-D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.