Abstract

This study demonstrates the feasibility of poly(lactic acid) fibre production using fermentative lactic acid from food waste. Poly(lactic acid) was synthesized through ring-opening polymerization, in which the precursor lactide was produced by a novel catalytic method. Zinc oxide aqueous nanoparticle (30–40 nm) dispersion was applied as efficient catalyst due to its large surface area and rapid equilibrium between polymerization and depolymerization. Under optimal reaction conditions, lactide was produced at yields of 91–92% within 8 h, significantly improving the synthesis efficiency compared to the conventional tin-based catalytic method. The pure lactide product facilitated the conversion of food waste derived lactic acid to high molecular weight poly(lactic acid) (150,000 g mol−1), which was subsequently spun to fibres with promising tensile and thermal properties for potential applications in textile and bioplastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.