Abstract

Nuclear-magnetic-resonance (NMR) gyroscopes based on MEMS vapor cell technology are currently being investigated worldwide and show superior advantages over current MEMS gyroscopes. However, there are still challenges in the upscaling and further deployment of NMR gyroscopes, due to the extremely high cost of the required gases (i.e., 129Xe, 131Xe), size, and high power consumption. To tackle these bottlenecks, in this study, a miniaturized, chip-scale, and low-cost NMR gyroscope has been conceptualized and fabricated. Here, a cost-effective and scalable filling of MEMS vapor cells with Xe gas was developed via an innovative microfabrication and wafer stacking process flow. By utilizing ultra-thin glass wafers, Taiko-processed silicon wafers, and an external gas flow system integrated into the wafer bonder, a sequential anodic bonding technique is executed to create a hermetically sealed Xe gas-filled chamber at minimal Xe consumption during the filling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.