Abstract

On-stream analysis of the element content in ore slurry plays an important role in the control of the mineral flotation process. Therefore, our laboratory developed a LIBS-based slurry analyzer named LIBSlurry, which can monitor the iron content in slurries in real time. However, achieving high-precision quantitative analysis results of the slurries is challenging. In this paper, a weakly supervised feature selection method named spectral distance variable selection was proposed for the raw spectral data. This method utilizes the prior information that multiple spectra of the same slurry sample have the same reference concentration to assess the important weight of spectral features, and features selected by this prior can avoid over-fitting compared with a traditional wrapper method. The spectral data were collected on-stream of iron ore concentrate slurry samples during the mineral flotation process. The results show that the prediction accuracy is greatly improved compared with the full-spectrum input and other feature selection methods; the root mean square error of the prediction of iron content can be decreased to 0.75%, which helps to realize the successful application of the analyzer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call