Abstract

This paper presents an efficient VLSI architecture of the contest-based adaptive variable length code (CAVLC) decoder with power optimized for the H.264/advanced video coding (AVC) standard. In the proposed design, according to the regularity of the codewords, the first one detector is used to solve the low efficiency and high power dissipation problem within the traditional method of table-searching. Considering the relevance of the data used in the process of runbefore’s decoding, arithmetic operation is combined with finite state machine (FSM), which achieves higher decoding efficiency. According to the CAVLC decoding flow, clock gating is employed in the module level and the register level respectively, which reduces 43% of the overall dynamic power dissipation. The proposed design can decode every syntax element in one clock cycle. When the proposed design is synthesized at the clock constraint of 100 MHz, the synthesis result shows that the design costs 11 300 gates under a 0.25 µm CMOS technology, which meets the demand of real time decoding in the H.264/AVC standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.