Abstract
Mixture design is a design of experiments (DOE) tool used to determine the optimum combination of chemical constituents that deliver a desired response (or property) using a minimum number of experimental runs. While the approach is sufficient for most experimental designs, it suffers from combinatorial explosion and visualization difficulties when dealing with multicomponent mixtures. To circumvent these problems, a recently developed design technique called property clustering is applied. In this type of design the properties are transformed to conserved surrogate property clusters described by property operators, which have linear mixing rules even if the operators themselves are nonlinear. Product and process property targets are then used to describe a feasibility target region. To solve the mixture design, components are mixed according to property operator models in a reverse problem format until the mixture falls within the feasibility target region. Once candidate solutions are found, they can be...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.