Abstract

Although the engineering of visible-light-driven photocatalysts with appropriate bandgap structures is beneficial for generating hydrogen (H2), the construction of heterojunctions and energy band matching are extremely challenging. In this study, In2O3@Ni2P (IO@NP) heterojunctions are attained by annealing MIL-68(In) and combining the resulting material with NP via a simple hydrothermal method. Visible-light photocatalysis experiments validate that the optimized IO@NP heterojunction exhibits a dramatically improved H2 release rate of 2485.5 μmol g-1 h-1 of 92.4 times higher than that of IO. Optical characterization reveals that the doping of IO with an NP component promotes the rapid separation of photo-induced carriers and enables the capture of visible light. Moreover, the interfacial effects of the IO@NP heterojunction and synergistic interaction between IO and NP that arises through their close contact mean that plentiful active centers are available to reactants. Notably, eosin Y (EY) acts as a sacrificial photosensitizer and has a significant effect on the rate of H2 generation under visible light irradiation, which is an aspect that needs further improvement. Overall, this study describes a feasible approach for synthesizing promising IO-based heterojunctions for use in practical photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call