Abstract

In this article, we study the efficiency problem of video stream near-duplicate monitoring in a large-scale repository. Existing stream monitoring methods are mainly designed for a short video to scan over a query stream; they have difficulty being scalable for a large number of long videos. We present a simple but effective algorithm called incremental similarity update to address the problem. That is, a similarity upper bound between two videos can be calculated incrementally by leveraging the prior knowledge of the previous calculation. The similarity upper bound takes a lightweight computation to filter out unnecessary time-consuming computation for the actual similarity between two videos, making the search process more efficient. We integrate the algorithm with inverted indexing to obtain a candidate list from the repository for the given query stream. Meanwhile, the algorithm is applied to scan each candidate for locating exact near-duplicate subsequences. We implement several state-of-the-art methods for comparison in terms of accuracy, execution time, and memory consumption. Experimental results demonstrate the proposed algorithm yields comparable accuracy, compact memory size, and more efficient execution time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.