Abstract

All existing video coding standards consider a video as a temporal (along T-axis) collection of two-dimensional (2D) pictures (formed by XY-axes) and compress them by exploiting spatial and temporal redundancy in the pictures. A recent optimal compression plane (OCP) determination technique shows that better compression can be achieved by relaxing the physical meaning of axes by exploring information redundancy in a fuller extent where a video is considered as a 3D data cube. Spatial and temporal dimensions are determined based on the statistical redundancy along each axis. Treating a video as a 3D data cube revolutionises the traditional video features such as background, motion, object, zooming, panning etc. In this study, the authors apply dynamic background modelling to the OCP plane to exploit the newly generated background in the video for further improving the coding performance. The experimental results reveal that the proposed approach outperforms the existing state-of-the-art OCP technique as well as the H.264 video coding standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.