Abstract

We report first-Stokes vibrational conversion efficiency of 21% and 35%, respectively, in high-pressure O2- and N2-stimulated Raman cells. Broadband superfluorescence is employed to seed these Raman cells, significantly increasing the conversion efficiencies with no measured effect on the Raman spectrum. The addition of helium buffer gas reduces competition from stimulated Brillouin scattering and improves the pulse-to-pulse stability and spatial mode quality by increasing the thermal conductivity. Further improvement of the spatial mode quality is achieved by use of gentle heating on the bottom of the cell to induce convection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.