Abstract

Efficient velocity estimation is crucial for the robust operation of navigation control loops of micro aerial vehicles (MAVs). Motivated by the research on how animals exploit their visual topographies to rapidly perform locomotion, we propose a bio-inspired method that applies quasi-parallax technique to estimate the velocity of an MAV equipped with a forward-looking stereo camera without GPS. Different to the available optical flow-based methods, our method can realize efficient metric velocity estimation without applying any depth information from either additional distance sensors or from stereopsis. In particular, the quasi-parallax technique, which claims to press maximal benefits from the configuration of two frontally parallel cameras, leverages pairs of parallel visual rays to eliminate rotational flow for translational velocity estimation, followed by refinement of the estimation of rotational velocity and translational velocity iteratively and alternately. Our method fuses the motion information from two frontal-parallel cameras without performing correspondences matching, achieving enhanced robustness and efficiency. Extensive experiments on synthesized and actual scenes demonstrate the effectiveness and efficiency of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.