Abstract

For low bit rate speech coding applications, it is important to quantize the LPC parameters accurately using as few bits as possible. Though vector quantizers are more efficient than scalar quantizers, their use for accurate quantization of linear predictive coding (LPC) information (using 24-26 bits/frame) is impeded by their prohibitively high complexity. A split vector quantization approach is used here to overcome the complexity problem. An LPC vector consisting of 10 line spectral frequencies (LSFs) is divided into two parts, and each part is quantized separately using vector quantization. Using the localized spectral sensitivity property of the LSF parameters, a weighted LSF distance measure is proposed. With this distance measure, it is shown that the split vector quantizer can quantize LPC information in 24 bits/frame with an average spectral distortion of 1 dB and less than 2% of the frames having spectral distortion greater than 2 dB. The effect of channel errors on the performance of this quantizer is also investigated and results are reported.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.