Abstract

Advanced oxidation processes (AOPs) using strongly oxidizing radicals are promising for wastewater treatment and gas purification. Nevertheless, the short half-life of radicals and the limited mass transfer in traditional reactors cause under-utilization of radicals and low pollutant removal efficiency. High-gravity technology (HiGee)-enhanced AOPs (HiGee-AOPs) have been demonstrated a promising way to enhance radical utilization in a rotating packed bed reactor (RPB). Here, we review the potential mechanisms of intensified radical utilization in HiGee-AOPs, structures and performance of RPB, and applications of HiGee in AOPs. The intensification mechanisms are described from three aspects: enhanced generation of radicals by efficient mass transfer, in-situ radical utilization under frequent liquid film renewal, and selective effect on radical utilization due to micromixing in RPB. Based on these mechanisms, we propose a novel High-gravity flow reaction with the essence of efficiency, in-situ, and selectivity in order to better explain the strengthening mechanisms in HiGee-AOPs. HiGee-AOPs possess great potential for treating effluent and gaseous pollutants due to characteristics of High-gravity flow reaction. We discuss the pros and cons of different RPBs and their applications to specific HiGee-AOPs. HiGee improve the following AOPs: (1) facilitate interfacial mass transfer in homogeneous AOPs, (2) enhance mass transfer to expose more catalytically active sites and mass-produce nanocatalysts for heterogeneous AOPs, (3) inhibit bubble accumulation on the electrode surface of electrochemical AOPs, (4) increase the mass transfer between liquid and catalysts in UV-assisted AOPs, (5) improve the micromixing efficiency of ultrasound-based AOPs. Strategies outlined in this paper should inspire further development of HiGee-AOPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.