Abstract

Underwater acoustical communication channels are characterized by the spreading of received signals in space (direction of arrival) and in time (delay). The spread is often limited to a small number of space-time clusters. In this paper, the space-time clustering is exploited in a proposed receiver designed for guard-free orthogonal frequency-division multiplexing with superimposed data and pilot signals. For separation of space clusters, the receiver utilizes a vertical linear array (VLA) of hydrophones, whereas for combining delay-spread signals within a space cluster, a time-domain equalizer is used. We compare a number of space-time processing techniques, including a proposed reduced-complexity spatial filter, and show that techniques exploiting the space-time clustering demonstrate an improved detection performance. The comparison is done using signals transmitted by a moving transducer, and recorded on a 14-element nonuniform VLA in sea trials at distances of 46 and 105 km.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.