Abstract

BackgroundHorticultural intensive type systems dedicated in producing greenhouse vegetables are one of the primary industries generating organic waste. Towards the implementation of a zero-waste strategy, this work aims to use discarded vegetables (tomato, pepper and watermelon) as feedstock for producing microbial oil using the oleaginous yeast Cryptococcus curvatus.ResultsThe soluble fraction, resulting after crushing and centrifuging these residues, showed C/N ratios of about 15, with a total carbohydrate content (mainly glucose, fructose and sucrose) ranging from 30 g/L to 65 g/L. Using these liquid fractions as substrate under a pulse-feeding strategy with a concentrated glucose solution resulted in an intracellular total lipid accumulation of about 30% (w/w) of the total dry cell weight (DCW). To increase this intracellular lipid content, the initial C/N content was increased from 15 to 30 and 50. Under these conditions, the process performance of the pulse-feeding strategy increased by 20–36%, resulting in a total intracellular lipid concentration of 35–40% DCW (w/w).ConclusionThese results demonstrate the potential of discarded vegetables as a substrate for producing bio-based products such as microbial oil when proper cultivation strategies are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.