Abstract

More accurate methods are needed to represent biogeochemistry in ocean models with coarse spatial resolution, in order to assess the response of marine ecosystems to global change. We use eddy-resolving simulations to test methods of upscaling biogeochemistry from 1km to the 100km scale of global model grid cells. The neglect of subgrid-scale variability results in serious errors which are not robustly corrected by retuning parameters in the model dynamics. Moment closure schemes provide accurate upscaling for modest computational investment, with broadly similar results obtained by second moment and conditional moment closure schemes. However, the conditional scheme gives clear improvement when variability is imposed on maximum uptake rates under Michaelis–Menten nutrient limitation, as this may invalidate second-order expansions of the mean field dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.