Abstract

The mechanisms of upconverted photocurrent in InAs quantum structures embedded in Al${}_{x}$Ga${}_{1\ensuremath{-}x}$As were studied with simultaneous measurements of photoluminescence and photocurrent spectra. Efficient upconversion was verified in samples with and without quantum dots. The dominant upconversion process from low temperatures to room temperature was found to occur through an Auger process in disklike InAs quantum structures. The results suggest the importance of shallow energy levels, which enable upconversion and efficient carrier extraction through multiparticle interactions. The disklike structure was concluded to be a suitable intermediate-band structure in terms of the energy conversion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.