Abstract

Melanoma is a very serious disease. The segmentation of skin lesions is a critical step for diagnosing melanoma. However, skin lesions possess the characteristics of large size variations, irregular shapes, blurring borders, and complex background information, thus making the segmentation of skin lesions remain a challenging problem. Though deep learning models usually achieve good segmentation performance for skin lesion segmentation, they have a large number of parameters and FLOPs, which limits their application scenarios. These models also do not make good use of low-level feature maps, which are essential for predicting detailed information. The Proposed EUnet-DGF uses MBconv to implement its lightweight encoder and maintains a strong encoding ability. Moreover, the depth-aware gated fusion block designed by us can fuse feature maps of different depths and help predict pixels on small patterns. The experiments conducted on the ISIC 2017 dataset and PH2 dataset show the superiority of our model. In particular, EUnet-DGF only accounts for 19% and 6.8% of the original Unet in terms of the number of parameters and FLOPs. It possesses a great application potential in practical computer-aided diagnosis systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call