Abstract
We propose a novel variant of the UCB algorithm (referred to as Efficient-UCB-Variance (EUCBV)) for minimizing cumulative regret in the stochastic multi-armed bandit (MAB) setting. EUCBV incorporates the arm elimination strategy proposed in UCB-Improved, while taking into account the variance estimates to compute the arms' confidence bounds, similar to UCBV. Through a theoretical analysis we establish that EUCBV incurs a gap-dependent regret bound which is an improvement over that of existing state-of-the-art UCB algorithms (such as UCB1, UCB-Improved, UCBV, MOSS). Further, EUCBV incurs a gap-independent regret bound which is an improvement over that of UCB1, UCBV and UCB-Improved, while being comparable with that of MOSS and OCUCB. Through an extensive numerical study we show that EUCBV significantly outperforms the popular UCB variants (like MOSS, OCUCB, etc.) as well as Thompson sampling and Bayes-UCB algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.