Abstract

Reducing the calculation cost is of great importance as the demand for interior ballistic calculation is increasing. The key factor of interior ballistic simulation is the quest to develop a more efficient method. In this paper, an efficient two-dimension particle element method (PEM) is proposed to simulate the detailed multidimensional flow of the gas and propellant particle in the chamber. Firstly, several real particles are packed as the particle element to reduce the calculation of the solid phase. In particular, the particle element matrix is established to describe the distribution of particle parameters. Secondly, the particle element boundary is adjusted according to the particle’s movement to reduce the computational cost of grid generation. Besides, the dynamic self-adapting mesh map method is adopted to realise the coupling computation between gas phase and the particle element. The application of a standard virtual gun as a standard benchmark for interior ballistic codes is used to validate the accuracy and reliability with 1.68% error. The particle element model accurately describes the distribution of flow field in the chamber. Compared with the two-fluid method, the PEM significantly improves the computational efficiency by 21.7%. The PEM may be promising for the rapid simulation of two-phase flow in interior ballistic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call