Abstract
We demonstrate high-power edge-emitting laser diodes (LDs) with tunnel junction contacts grown by molecular beam epitaxy (MBE). Under pulsed conditions, lower threshold current densities were observed from LDs with MBE-grown tunnel junctions than from similarly fabricated control LDs with ITO contacts. LDs with tunnel junction contacts grown by metal-organic chemical vapor deposition (MOCVD) were additionally demonstrated. These LDs were fabricated using a p-GaN activation scheme utilizing lateral diffusion of hydrogen through the LD ridge sidewalls. Secondary ion mass spectroscopy measurements of the [Si] and [Mg] profiles in the MBE-grown and MOCVD-grown tunnel junctions were conducted to further investigate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.