Abstract

Brain diseases caused due to malignant are the biggest concern among all the age groups. Studies show that almost 80% of death cases are reported due to presence of malignant tumour. Hence diagnosing brain tumour at an early stage would increase the survival rate. Magnetic resonance imaging (MRI) plays a major role in diagnosing tumours in human brain. However, it is considered to be a time consuming and tedious process which could lead to deviation in the opinion of radiologists. This has led to the development of computer-based automatic extraction of tumour cells from the images obtained by MRI. This paper proposes an efficient tumour detection mechanism from MR images using morphological processing and unified algorithm. A neural network that uses bounding boxes and associated class probabilities detects the packets of tumour that exist in a full MR image. Simulated results of the proposed technique on the BRATS 2016 dataset show that a detection accuracy of 95.97% is achieved, while reducing the likelihood of false positives. This approach is compared with other detection methods such as DPM and R-CNN and the analysis proves that our method proposed outclasses the other detection methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.