Abstract

Accurate predictions of charge excitation energies of molecules in the disordered condensed phase are central to the chemical reactivity, stability, and optoelectronic properties of molecules and critically depend on the specific environment. Herein, we develop a stochastic GW method for calculating these charge excitation energies. The approach employs maximally localized electronic states to define the electronic subspace of a molecule and the rest of the system, both of which are randomly sampled. We test the method on three solute-solvent systems: phenol, thymine, and phenylalanine in water. The results are in excellent agreement with the previous high-level calculations and available experimental data. The stochastic calculations for supercells containing up to 1000 electrons representing the solvated systems are inexpensive and require ≤1000 central processing unit hrs. We find that the coupling with the environment accounts for ∼40% of the total correlation energy. The solvent-to-solute feedback mechanism incorporated in the molecular correlation term causes up to 0.6eV destabilization of the quasiparticle energy. Simulated photo-emission spectra exhibit red shifts, state-degeneracy lifting, and lifetime shortening. Our method provides an efficient approach for an accurate study of excitations of large molecules in realistic condensed phase environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.