Abstract

Many current treatments for brine wastewaters are energy-intensive, chemical-intensive, and involve independent process in the removal of salts and contaminants. We demonstrate that through the integration of capacitive deionization and photocatalysis reactions within carbon nanotubes (CNTs) based membrane system, we are able to realize the purification and desalination of wastewaters via single-step, energy-efficient, and environmentally friendly route. We firstly designed the membrane system consisting of graphitic carbon nitride (g-C3N4), CNTs membrane, and poly(vinyl alcohol)-formaldehyde (PVF) foam. Then, two identical membrane systems were used as permeable electrodes and photocatalytic microreactors to construct the flow-through setup. The tests of the setup with a variety of dye solution, antibiotics solution, and actual wastewaters prove that wastewaters passing through the setup promptly turn to clean water with significantly decreased salinity. This is because the setup can use C3N4 modified CNTs membrane to adsorb organic contaminants and inorganic ions and decompose contaminants via photocatalysis reactions. In addition, by discharging the setup, its adsorption capacity towards salts is easily recovered. Consequently, the flow-through setup is observed to exhibit stable performance for concurrent removal of organic contaminants and inorganic salts in multiple cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.