Abstract

Aged landfill leachate is challenging to treat owing to its extremely high ammonia concentration and poor biodegradability. We constructed pilot-scale dynamic wave stripping equipment to separate ammonia from landfill leachate and achieved excellent results. To further expand the usage of pilot-scale equipment in actual water treatment process and implement it in a sewage plant, we established the mass transfer kinetic physics and mathematical model of the dynamic wave stripping process based on the surface renewal theory and the traditional stripping method. The surface renewal theory and the traditional stripping method are employed to analyze the mechanism of various experimental parameters affecting the stripping process, predict the stripping effect of the equipment under different conditions, and verify the calculation results of the model using the kinetic fitting results of the experimental data. These calculation results of the model indicate that the mass transfer kinetic coefficients of ammonia stripping at 20 °C, 25 °C, and 30 °C are 85.62 min, 75.34 min, and 65.88 min, respectively, when the gas–liquid ratio is 129. When the gas–liquid ratios are 62, 129, and 163 at 25 °C, the mass transfer kinetic coefficients of ammonia stripping are 102.61 min, 75.34 min, and 61.43 min, respectively. With increasing temperature and gas–liquid ratio, the particle size and number of bubbles in the wave tube of the stripping equipment gradually decrease and the mass transfer efficiency of free ammonia between the gas and liquid phases improves, enhancing the stripping efficiency of ammonia nitrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call