Abstract

We consider the problem of the efficient transmit antenna subset (TAS) selection for maximizing the signal-to-interference-plus-noise ratio (SINR) of multiuser space–time line code (MU–STLC) systems. The exhaustive search for optimal TAS selection is impractical since the total number of transmit antennas increases. We propose two efficient TAS selection schemes based on the Woodbury formula. The first is to incrementally select active transmit antennas among the available transmit antennas. To reduce the complexity of the incremental selection scheme, the Woodbury formula is employed in the optimization process. The second is to perform the decremental strategy in which the Woodbury formula is also applied to develop the low-complexity TAS selection procedure for the MU–STLC systems. Simulation results show that the proposed incremental and decremental TAS selection algorithms offer better alternatives than the existing greedy TAS selection algorithm for the MU–STLC systems. Furthermore, in terms of bit error rate, the proposed minimum mean square error decremental TAS selection algorithm turns out to outperform the existing greedy algorithm with significantly lower computational complexity. Finally, we analyze the detection SINR penalty experienced from TAS selection and the analytical quantity is shown to be well matched with simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.