Abstract

A new method of efficiently transforming water vapor into hydrogen was investigated by dielectric barrier discharge (DBD) loaded with bamboo carbon bed structured by fibrous material in an argon medium. Hydrogen productivity was measured in three different reactors: a non-loaded DBD (N-DBD), a bamboo carbon (BC) bed DBD (BC-DBD), and a quartz wool (QW)-loaded BC DBD (QC-DBD). The effects of the quality ratio of BC to QW and relative humidity on hydrogen productivity were also investigated in QC-DBD at various flow rates. The reaction process and mechanism were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy, N2 physisorption experiments, infrared spectroscopy, and optical emission spectroscopy. A new reaction pathway was developed by loading BC into the fibrous structured material to activate the reaction molecules and capture the O-containing groups in the DBD reactor. A hydrogen productivity of 17.3 g/kWh was achieved at an applied voltage of 5 kV, flow rate of 4 L/min, and 100% relative humidity (RH) in the QC-DBD with a quality ratio of BC to QW of 3.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.