Abstract

Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15° upward bend and a 105° downward bend to account for the orthogonal orientation of the positron accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. A 7 m long 5 cm diameter stainless-steel tube and a 20 mm long, 1.5 mm diameter cryogenic pumping restriction ensure that the 10−2 mbar pressure in the accumulator is isolated well from the extreme vacuum required in the Penning trap to allow for long antimatter storage times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.