Abstract

Recurrent neural network language models RNNLMs are becoming increasingly popular for a range of applications including automatic speech recognition. An important issue that limits their possible application areas is the computational cost incurred in training and evaluation. This paper describes a series of new efficiency improving approaches that allows RNNLMs to be more efficiently trained on graphics processing units GPUs and evaluated on CPUs. First, a modified RNNLM architecture with a nonclass-based, full output layer structure F-RNNLM is proposed. This modified architecture facilitates a novel spliced sentence bunch mode parallelization of F-RNNLM training using large quantities of data on a GPU. Second, two efficient RNNLM training criteria based on variance regularization and noise contrastive estimation are explored to specifically reduce the computation associated with the RNNLM output layer softmax normalisation term. Finally, a pipelined training algorithm utilizing multiple GPUs is also used to further improve the training speed. Initially, RNNLMs were trained on a moderate dataset with 20M words from a large vocabulary conversational telephone speech recognition task. The training time of RNNLM is reduced by up to a factor of 53 on a single GPU over the standard CPU-based RNNLM toolkit. A 56 times speed up in test time evaluation on a CPU was obtained over the baseline F-RNNLMs. Consistent improvements in both recognition accuracy and perplexity were also obtained over C-RNNLMs. Experiments on Google's one billion corpus also reveals that the training of RNNLM scales well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call