Abstract
The existence of “barren plateau landscapes” for generic discrete-variable quantum neural networks, which obstructs efficient gradient-based optimization of cost functions defined by global measurements, would be surprising in the case of generic linear optical modules in quantum optical neural networks due to the tunability of the intensity of continuous variable states and the relevant unitary group having exponentially smaller dimension. We demonstrate that coherent light in m modes can be generically compiled efficiently if the total intensity scales sublinearly with m, and extend this result to cost functions based on homodyne, heterodyne, or photon detection measurement statistics, and to noisy cost functions in the presence of attenuation. We further demonstrate efficient trainability of m mode linear optical quantum circuits for variational mean field energy estimation of positive quadratic Hamiltonians for input states that do not have energy exponentially vanishing with m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.