Abstract

Digital reconstruction of a complex heterogeneous media from the limited statistical information, mostly provided by different imaging techniques, is the key to the successful computational analysis of this important class of materials. In this study, a novel approach is presented for three-dimensional (3D) reconstruction of a three-phase microstructure from its statistical information provided by two-dimensional (2D) cross-sections. In this three-step method, first two-point correlation functions (TPCFs) are extracted from the cross-section(s) using a spectral method suitable for the three-phase media. In the next step, 3D TPCFs are approximated for all vectors in a representative volume element (RVE). Finally, the 3D microstructure is realized from the full-set TPCFs obtained in the previous step, using a modified phase-recovery algorithm. The method is generally applicable to any complex three-phase media, here illustrated for an SOFC anode microstructure. The capabilities and shortcomings of the method are then investigated by performing a qualitative comparison between example cross-sections obtained computationally and their experimental equivalents. Finally, it is shown that the method almost conserves key microstructural properties of the media including tortuosity, percolation and three-phase boundary length (TPBL).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.