Abstract

Herein, a giant-sized DNA nanoarray was subtly assembled by two kinds of independent tetrahedral DNA structures as the DNA track for a multi-armed three-dimensional (3D) DNA nanomachine to perform signal transduction and amplification efficiently, which was developed as an electrochemical biosensor for the rapid and ultrasensitive detection of matrix metalloproteinase 2 (MMP-2). Impressively, in contrast to conventional DNA walkers with inefficiency, which walked on random DNA tracks composed of a two-dimensional (2D) probe or a one-dimensional (1D) single-stranded (ss)DNA probe, the multi-armed 3D DNA nanomachine from exonuclease III (Exo III) enzyme-assisted target recycling amplification would be endowed with faster reaction speed and better walking efficiency because of the excellent rigidity and orderliness of the tetrahedral DNA nanoarray structure. Once the hairpin H3-label with the signal substance ferrocene (Fc) was added to the modified electrode surface, the multi-armed 3D DNA nanomachine would be driven to move along the well-designed nanoarray tracks by toehold-mediated DNA strand displacement, resulting in most of the ferrocene (Fc) binding to the electrode surface and a remarkable increase in electrochemical signals within 60 min. As a proof of concept, the prepared biosensor attained a low detection limit of 11.4 fg/mL for the sensitive detection of the target MMP-2 and was applied in Hela and MCF-7 cancer cell lysates. As a result, this strategy provided a high-performance sensing platform for protein detection in tumor diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.