Abstract

Pd nanoparticles supported on defective TiO2 with oxygen vacancies (TiO2-OV) have been prepared by an oxygen vacancies mediated reduction strategy. The resulting Pd-TiO2-OV catalyst with uniform Pd nanoparticles deposition demonstrates a remarkably thermocatalytic activity toward rapid, efficient reduction of nitroaromatics in water. The reaction proceeds efficiently using HCOONH4 as a hydrogen source under ambient conditions. The controlled experiments show that the (•)CO2(-) radicals produced by dehydrogenation of HCOONH4 are the main active species for the selective nitro reduction. Moreover, defective TiO2 nanostructures deposited with Pd nanoparticles, featuring excellent visible-light absorption via the creation of oxygen vacancies, can take advantage of the solar and thermal energy to drive catalytic reduction reactions more efficiently at room temperature. During this process, the oxygen vacancies and Pd nanoparticles play synergetic roles in the photoreduction of nitro compounds. Our work would be beneficial for implementation of a novel defect-mediated catalytic system in which solar light energy can be coupled with thermal energy to drive an energy efficient catalytic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.