Abstract

We observe intense pulses of far-infrared electromagnetic radiation emitted from arrays of InAs nanowires. The THz radiation power efficiency of these structures is about 15 times higher compared to a planar InAs substrate. This is explained by the preferential orientation of coherent plasma motion to the wire surface, which overcomes radiation trapping by total-internal reflection. We present evidence that this radiation originates from a low-energy acoustic surface plasmon mode of the nanowire. This is supported by independent measurements of electronic transport on individual nanowires, ultrafast THz spectroscopy and theoretical analysis. Our combined experiments and analysis further indicate that these plasmon modes are specific to high aspect ratio geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.