Abstract

The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting.

Highlights

  • Single-crystalline ingots of black phosphorus (BP) were grown via a chemical vapor transport technique similar to the one reported in ref. 20

  • Flakes having thickness in the range 8-14 nm were mechanically exfoliated from bulk BP crystal using a standard adhesive tape technique on a 300 nm thick SiO2 layer on the top of a 300 μ m-thick intrinsic silicon wafer

  • By keeping in mind that the THz optical power is effectively transferred to the flake by the antenna, the following considerations can be done: i) the first term in (2) contributes to the dark current and it is negligible in our case, being VSD = 0 V; ii) Ipe can play a role only for sample A; no temperature gradient is present along the field effect transistor (FET) channel of sample B, as an effect of both the symmetric radiation feeding and the reduced distances between the metallic electrodes

Read more

Summary

Introduction

The plasma-wave rectification effect, triggered by the antenna asymmetric radiation feeding in the conductive channel, results in an asymmetric charge density modulation, which will in turn induce a longitudinal electric field, with a preferential direction for the current flow.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.