Abstract

The research and development of intelligent automation solutions is a ground-breaking point for the factory of the future. A promising and challenging mission is the use of autonomous robot systems to automate tasks in the field of maintenance. For this purpose, the robot system must be able to plan autonomously the different manipulation tasks and the corresponding paths. Basic requirements are the development of algorithms with a low computational complexity and the possibility to deal with environmental uncertainties. In this paper, an approach is presented, which is especially suited to solve the problem of maintenance automation. For this purpose, offline data from CAD is combined with online data from an RGBD vision system via a probabilistic filter, to compensate uncertainties from offline data. For planning the different tasks, a method is explained, which uses a symbolic description, founded on a novel sampling-based method to compute the disassembly space. For path planning, we use global state-of-the-art algorithms with a method that allows the adaption of the exploration stepsize in order to reduce the planning time. Every method is experimentally validated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.