Abstract

RNA interference (RNAi) is a posttranscriptional gene silencing mechanism used to study gene functions, inhibit viral activities, and treat diseases. Due to the nonspecific effects of RNAi, target validation through target detection is crucial for the success of RNAi experiments. Since target detection involves large amounts of transcriptome-wide searches, computational efficiency is critical. To efficiently detect targets for RNAi design, we develop both sequential and parallel search algorithms using RNA string kernels, which model mismatches, G-U wobbles, and bulges between siRNAs and target mRNAs. Based on tests in S. pombe, C. elegans, and human, our algorithms achieved speedups of 6 orders of magnitude over a baseline implementation. Our design strategy also leads to a framework for efficient, flexible, and portable string search algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.