Abstract

Integrating bio-friendly optical hydrogel fibers (HFs) with solid-state fibers (SFs) could expand the horizons of fiber-optic technology for bio-photonics. However, methods for coupling HF and SF-based systems are inefficient due to the mode field mismatch. Here, a hydrogel fiber coupler with a taper core-cladding structure is demonstrated for efficiently coupling HF to SF and fabricated through suspended photocuring 3D printing. Coupling efficiencies of 8.3 and 9.4 dB are obtained at 632 and 473 nm, respectively, which are 22% better than those of conventional couplers. The working bandwidth covers visible wavelengths, satisfying bioengineering requirements. This research removes obstacles to optical fiber applications in bioscience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.