Abstract

An analytical method has been developed that allows the simultaneous determination of five benzotriazole (BTRs), four benzothiazole (BTs) and five benzenesulfonamide (BSAs) derivates. The method is based on tandem solid-phase extraction (SPE) with Oasis HLB followed by a clean-up step with Florisil. The chromatographic analysis was performed in less than 15min and detection was carried out with a triple quadrupole mass analyser operating in multiple reaction monitoring (MRM) mode. A comparison was performed between Oasis HLB and Oasis MAX sorbents for the solid-phase extraction, with Oasis HLB being the sorbent that gave the highest recoveries, ranging between 75% and 106%, depending on the compound and the matrix analysed. The proposed clean-up with Florisil sorbent reduced the matrix effect to below 20%. The repeatability (%RSD, 50–3000ng/L, n=3) of the method was less than 15% for all of the compounds in all of the matrices. The limits of detection (LODs) achieved ranged from 1ng/L for BTR in river water up to 100ng/L for BT in influent sewage.All of the compounds were determined in environmental waters such as river water and sewage. The highest concentrations determined corresponded to influent sewage samples in which the sum of concentrations for all compounds were between 4.6μg/L and 8.0μg/L. These concentrations were slightly reduced in secondary effluent and tertiary effluent sewage. Moreover, samples from tertiary effluent sewage based on ultra-filtration membrane treatments were also analysed and preliminary results seem to indicate that these treatments may be most effective for removing BTR, BT and BSA derivates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.