Abstract
System effects should be considered in the probabilistic analysis of a layered soil slope due to the potential existence of multiple failure modes. This paper presents a system reliability analysis approach for layered soil slopes based on multivariate adaptive regression splines (MARS) and Monte Carlo simulation (MCS). The proposed approach is achieved in a two-phase process. First, MARS is constructed based on a group of training samples that are generated by Latin hypercube sampling (LHS). MARS is validated by a specific number of testing samples which are randomly generated per the underlying distributions. Second, the established MARS is integrated with MCS to estimate the system failure probability of slopes. Two types of multi-layered soil slopes (cohesive slope and c–φ slope) are examined to assess the capability and validity of the proposed approach. Each type of slope includes two examples with different statistics and system failure probability levels. The proposed approach can provide an accurate estimation of the system failure probability of a soil slope. In addition, the proposed approach is more accurate than the quadratic response surface method (QRSM) and the second-order stochastic response surface method (SRSM) for slopes with highly nonlinear limit state functions (LSFs). The results show that the proposed MARS-based MCS is a favorable and useful tool for the system reliability analysis of soil slopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.