Abstract

Many experiments cannot feasibly be conducted as factorials. Simulations using synthetically generated data are viable alternatives to such factorial experiments. The main objective of the present research is to develop a methodology and platform to synthetically generate spatially explicit forest ecosystems represented by points with a predefined spatial pattern. Using algorithms with polynomial complexity and parameters that control the number of clusters, the degree of clusterization, and the proportion of nonrandom trees, we show that spatially explicit forest ecosystems can be generated time efficiently, which enables large factorial simulations. The proposed method was tested on 1200 synthetically generated forest stands, each of 25 ha, using 10 spatial indices: Clark–Evans aggregation index; Ripley’s K; Besag’s L; Morisita’s dispersion index; Greig–Smith index; the size dominance index of Hui; index of nonrandomness of Pielou; directional index and mean directional index of Corral–Rivas; and size differentiation index of Von Gadow. The size of individual trees was randomly generated aiming at variograms such as real forests. We obtained forest stands with the expected spatial arrangement and distribution of sizes in less than 1 h. To ensure replicability of the study, we have provided free, fully functional software that executes the stated tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.