Abstract
LiV2O5 is considered an ideal cathode material for high specific energy thermal batteries due to its high voltage and high thermal stability. However, pure LiV2O5 is difficult to synthesize due to the multivalent nature of vanadium. In this paper, LiV2O5 powders in bulk were synthesized by using commercial V2O5 and LiBr as raw materials, followed by a simple ball milling and a sintering at 600 ℃ for 20 min. The discharge specific capacity of LiV2O5 cathode can reach 360.67 mAh g−1 at 0.05 A cm−2. Furthermore, LiV2O5/CFx cathode shows a specific capacity with 795 mAh g-1 at a cut-off voltage of 1.5 V, demonstrating significant potential for practical applications and providing a new approach for using CFx as a cathode material for thermal batteries. This article not only provides a method for mass-producing pure LiV2O5 cathode materials, but also explores a feasible strategy for using CFx with high-voltage and high specific capacity as cathode materials for thermal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.