Abstract

(R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine, a key chiral intermediate of selective tetrodotoxin-sensitive blockers, was efficiently synthesized by a bienzyme cascade system formed by with R-ω-transaminase (ATA117) and an alcohol dehydrogenase (ADH) co-expression system. Herein, we report that the use of ATA117 as the biocatalyst for the amination of 3,5-bistrifluoromethylacetophenone led to the highest efficiency in product performance (enantiomeric excess > 99.9%). Moreover, to further improve the product yield, ADH was introduced into the reaction system to promote an equilibrium shift. Additionally, bienzyme cascade system was constructed by five different expression systems, including two tandem expression recombinant plasmids (pETDuet-ATA117-ADH and pACYCDuet-ATA117-ADH) and three co-expressed dual-plasmids (pETDuet-ATA117/pET28a-ADH, pACYCDuet-ATA117/pET28a-ADH, and pACYCDuet-ATA117/pETDuet-ADH), utilizing recombinant engineered bacteria. Subsequent studies revealed that as compared with ATA117 single enzyme, the substrate handling capacity of BL21(DE3)/pETDuet-ATA117-ADH (0.25 g wet weight) developed for bienzyme cascade system was increased by 1.50 folds under the condition of 40 °C, 180 rpm, 0.1 M pH9 Tris-HCl for 24 h. To the best of our knowledge, ours is the first report demonstrating the production of (R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine using a bienzyme cascade system, thus providing valuable insights into the biosynthesis of chiral amines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call