Abstract

Abstract Transesterification of propylene carbonate (PC) and ethanol is a potent non-phosgene route for the synthesis of diethyl carbonate (DEC). In the present study, hydroxyapatite was synthesized and modified using Zn and Mg (Zn/HAP and Mg/HAP). Modified hydroxyapatite was used as catalyst for the synthesis of DEC. The thermal analysis of the catalytic precursor was studied using thermogravimetric-differential thermal analysis. The structural analysis, surface morphology, and nature of active sites over the catalyst surface were studied using techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, and CO2 temperature-programmed desorption. Effects of reaction conditions like reaction temperature, reaction time and ethanol/PC molar ratio on DEC yield were also studied. The effects of Mg and Zn on HAP were found to be promotional for the synthesis of DEC using PC and ethanol. Mg/HAP was found to be the best among the three catalysts studied owing to its high basicity. Maximum DEC yield of 52.1 % was obtained in 5 h at 433 K using Mg/HAP catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.