Abstract

This paper presents a novel and facile method of synthesizing polymer/silica particles with controlled asymmetric morphologies. Our approach is based on the sol–gel process in which cross-linked polystyrene particles (CPS) are adopted as templates and 3-mercaptopropyltriethoxysilane is used as a single silica source. The reaction process causes silane oligomer to preferentially grow on the local surface of CPS, giving rise to polystyrene/thiol-functionalized silica composite particles with a tunable shape. It is found that the morphologies of particles can be easily tailored by changing the ratio of ethanol/water in the reaction medium. In addition, the amount of cross-linker used during the polymerization also plays a key role in the formation of various complex-shaped particles. Controlled geometries of these organic/inorganic composite particles will allow a broad range of potential applications, such as photonic crystals, Pickering emulsifier, sensors, and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.