Abstract

Synthetic retinoids have generated in the fields of dermatology and oncology due to their potent anti-proliferative and differentiation activities. We efficiently synthesized different demethyl geranylgeranoic acid (GGA) analogs, and evaluated their biological activities. Among the demethyl analogs synthesized, 3-demethyl derivative exhibited the highest anti-proliferative activity in HL-60 cells. In addition, a 3-demethyl derivative induced apoptosis more potently than 9Z-retinoic acid. These activities were due to the high binding affinity of 3-demethyl derivative for retinoid receptors. We found that, in a conjugated polyene system combined with a methyl substituent, the position of the methyl played an important role in the regulation of gene transcription and apoptosis-inducing activity. These results provided useful information on the structure-activity relationships of GGA derivatives that function as acyclic retinoic acid analogs. This information is likely to be useful in the development of new anti-cancer drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call