Abstract

We present a novel and efficient method for solving the Poisson equation, the heat equation, and Stefan-type problems with Robin boundary conditions over potentially moving, arbitrarily-shaped domains. The method utilizes a level set framework, thus it has all of the benefits of a sharp, implicitly-represented interface such as the ease of handling complex topological changes. This method is straightforward to implement and leads to a linear system that is symmetric and positive definite, which can be inverted efficiently with standard iterative methods. This approach is second-order accurate for both the Poisson and heat equations, and first-order accurate for the Stefan problem. We demonstrate the accuracy in the L 1 and L ∞ norms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.