Abstract

Graphene is an important material for the design of flexible and stretchable electronic and optoelectronic devices on account of its high Young’s modulus and generation of highly confined surface plasmons. In this work, we report the near to far-infrared (FIR) input frequencies required to generate the maximum electric field and magnetic field for the efficient propagation of surface plasmons for differently doped, micron-long, free-standing and poly(methyl methacrylate) (PMMA) sandwiched graphene sheets. The effect of the variation of doping of graphene, graphene sheet length and bent angle of the graphene sheet on the propagating electromagnetic field is analysed at the obtained input excitation frequencies using finite element method. Low attenuation of 0.034 and 0.234 dB along with relatively high confinement of ~6 and ~13 nm for the surface plasmons are achieved for micron-long, bent, highly doped, freely suspended and PMMA sandwiched graphene sheets at 193.5 and 190 THz, respectively. The knowledge of these optimized NIR–FIR input excitation frequencies producing maximum electric and magnetic field output at the end of graphene sheet is useful for designing compact and efficient graphene-based flexible and wearable devices for medical imaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.